
Cloudera Fast Forward

Few-Shot Text
Classification
FF18 · December 2020

This is an applied research report by Cloudera Fast Forward. We write reports
about emerging technologies. Accompanying each report are working prototypes
or code that exhibits the capabilities of the algorithm and offer detailed
technical advice on its practical application. Read our full report on structural
time series below or download the PDF. You can view and download the code for
the accompanying text classification experiments on Github.

Few-Shot Text Classification report cover

https://www.cloudera.com/products/fast-forward-labs-research.html
https://www.cloudera.com/products/fast-forward-labs-research.html
file:///FF18-Few_Shot_Text_Classification-Cloudera_Fast_Forward.pdf
https://github.com/fastforwardlabs/few-shot-text-classification


Introduction

Latent Text Embeddings

The Embedding Model
Improving this approach with Zmap
Incorporating labeled data

Experiments

First, let's talk data
Improving on-the-fly classification with Zmap
Few-shot classification by optimizing Wmap

Interpretability

Limitations

Validation is a challenge
Meaningful labels are a necessity
This probably won’t beat supervised methods

Conclusion



Text classification is a ubiquitous capability with a wealth of use cases, including
sentiment analysis, topic assignment, document identification, article
recommendation, and more. While dozens of techniques now exist for this
fundamental task, many of them require massive amounts of labeled data in
order to prove useful. Collecting annotations for your use case, however, is
typically one of the most costly parts of any machine learning application, and
demand continues to grow for techniques that make the most of small amounts
of data.

At Cloudera Fast Forward, we are no strangers to learning with limited data.
We’ve covered multiple techniques in our research, including: active learning, in
which humans and machines collaborate to label data in a clever way,
essentially bootstrapping from a small amount of labeled data; and meta-
learning, in which deep learning algorithms learn to learn.

There are several paradigms for learning from limited amounts of training data.
Each of the scenarios outlined below can all be found in machine learning
literature and—while definitions continue to evolve—these terms do still tend to
have specific meanings.

Few-shot learning for classification is a scenario in which there is a small
amount of labeled data for all labels the model is expected to recognize. The
goal is for the model to generalize to new unseen examples in the same
categories both quickly and effectively.

In traditional zero-shot learning, a classifier is trained on one set of labels and
evaluated on a different set of labels that it has never seen before (thus “zero-
shot”). This typically requires providing the model with some type of metadata
about the unseen categories in order for it to generalize. (This is the scenario
addressed by our meta-learning report, in the context of image classification.) A
variation on zero-shot learning is for the model to be evaluated both on never-
before-seen and previously-seen labels; this is a more challenging task,
because the model must recognize the difference.

Introduction

https://arxiv.org/abs/2004.03705
https://blog.fastforwardlabs.com/2019/04/02/a-guide-to-learning-with-limited-labeled-data.html
https://meta-learning.fastforwardlabs.com/
https://meta-learning.fastforwardlabs.com/


Then there’s what we’ll call “on-the-fly” learning. This term is found in ML
literature less often. We’ll use it in the context of classification with no training
examples at all, and an undetermined number of labels. The goal of the model
is to assign examples into some unknown set of possible categories on the fly.
This type of model must leverage intrinsic information contained within the
labels themselves.

These learning paradigms are agnostic to the types of problems they attempt to
solve, and can be found everywhere from computer vision to reinforcement
learning. In this report, we’ll focus on text classification, and consider a classic
method that can perform under any of these circumstances. Specifically, we’ll
concentrate on text embeddings with a modern twist, and demonstrate their
versatility as well as their limitations. Finally, we’ll provide insight into best
practices for implementing this method.



The NLP research team at Hugging Face recently published a blog post that
detailed a handful of promising zero-shot text classification methods. We
decided to dig a little deeper into one of these methods ourselves. It’s an oldie,
but a goodie; we’ll explore how text embeddings can be used for classification.

First, an embedding method is used to generate a document representation
and, separately, representations for each of the possible class labels. A
document is then assigned the label that lies closest to it in the text embedding
space. Note that we do not necessarily need the documents to be labeled a
priori (in contrast to supervised learning, in which the model learns
relationships explicitly from labeled examples).

This method hinges on the idea that people can categorize documents into
named categories without training, because we understand the meaning of the
category labels. For example, when reviewing news articles, we can determine
whether an article belongs under Science and Technology or Business (or both!)
because the words “Science,” “Technology,” and “Business” each have
semantic meaning associated with them. The intrinsic meaning of words (in
particular, the class labels) is information that we leverage for classification.

Latent Text Embeddings

https://joeddav.github.io/blog/2020/05/29/ZSL.html


Let’s look at an example of how text embeddings can mimic this approach. First,
suppose we have a collection of news articles that we’d like to classify into one
of the following categories: World News, Business, Science & Technology, or
Sports. Next, let’s assume we have a method (the “Embedding Model”) that can
assign numeric vectors to text segments. We’ll use the Embedding Model to
embed our news article and each of our labels into latent space. (A latent
space is simply a compressed representation of the data in which similar data
points are closer together).

Suppose this is one of our news articles: “Breaking baseball barriers: Marlins
announce first female GM in MLB history.” We’ll pass the text of this article
(along with the labels) through our Embedding Model, similar to (though not
precisely) as shown below.

https://www.kare11.com/article/sports/breaking-baseball-barriers-marlins-announce-first-female-gm-in-mlb-history/89-db8297a4-af08-4899-9e1f-38f9ddb3bcce


This produces embedding vectors which we can plot in our latent space:

A news article and each of the labels are passed through the Embedding

Model to generate vector representations for each text segment.



We can now use a similarity metric (like cosine similarity) to compute which of
the labels is closest to our news article in latent space, indicating that these text
segments are the most similar. In this example, our article is closest to the word
“Sports,” so we assign Sports as the label. This is because the word “Sports” is
semantically similar to the word “Baseball,” which is the topic of our news
article. It was this similarity between words and sentences that allowed us to
label the news article—we didn’t use training data at all!

Now, of course, we’ve left a lot out of the discussion. Most pressing: what is
this mysterious Embedding Model? And what if we have some labeled
examples? And is it really this simple? (Spoiler alert: not quite.) Let’s explore
these questions.

The Embedding Model
The latent text embedding method of classification can be implemented with
just about any type of text embedding model (and has been—see these
examples), though some are definitely better than others! Which embedding

Each of the vectors (one for the news article, and one each for the

labels) can be represented in latent space. The article is closest to

the word “Sports” in latent space, so Sports is assigned as the label.

https://www.aaai.org/Papers/AAAI/2008/AAAI08-132.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-174.pdf


model should we choose? In this section, we’ll review some popular
approaches, though these are by no means exhaustive.

Representing text numerically is not a new idea, and can be as simple as a bag-
of-words or tf-idf vector, or as sophisticated as word2vec or GloVe. Better
performance is often achieved from contextual embeddings, like ELMo or BERT,
which embed words differently, depending on the other words in the sentence.
These approaches focus on words, n-grams, or pieces of words as the basic
embedding unit. Deriving a document representation then requires clever
aggregation of the word embeddings.

In contrast, sentence embedding methods embed whole sentences or
paragraphs; an early example is Doc2Vec, which is similar to word2vec, but
additionally learns a vector for the whole paragraph. More recent models
include InferSent and Universal Sentence Encoder. Sentence embedding
methods obviate the need for ad hoc aggregation techniques, and typically
better capture the semantic meaning of whole text segments (as compared to
aggregating word embeddings).

Recent advances in sentence embedding methods have prompted us to re-
evaluate the latent embedding approach. But first, what about BERT? Isn’t that
all the rage these days for everything NLP-related? Shouldn’t we just use BERT
to embed our text?

To BERT or not to BERT
Since its inception in 2017, BERT has been a popular embedding model. As
we’ll see, however, traditional ways of using BERT for semantic similarity are not
ideal for a latent text embedding approach.

BERT outputs an embedding vector for each input token, including word tokens
and special tokens, such as SEP (a token that designates “separation” between
input texts) and CLS. CLS is shorthand for “classification,” and this token was
intended as a way to generate a sentence-level representation for the input.
However, experiments have shown that using the CLS token as a sentence-level
feature representation drastically underperforms aggregated GloVe embeddings
in semantic similarity tests.

Another option is to pool together the individual embedding vectors for each
word token; this is the BERT equivalent of pooling word2vec vectors. However,
these embeddings are not optimized for similarity, nor can they be expected to

https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/projects/glove/
https://arxiv.org/pdf/1802.05365.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/pdf/1405.4053.pdf
https://arxiv.org/pdf/1705.02364.pdf
https://arxiv.org/pdf/1803.11175.pdf
https://arxiv.org/pdf/1908.10084.pdf


capture the semantic meaning of full sentences or paragraphs. While there are
plenty of use cases where these embeddings do prove useful, neither is ideal
as a latent space for semantic sentence similarity.

Rather than using BERT as an embedding model, we can instead train it to
specifically learn semantic similarity between sentences (an example of a
sentence-pair regression task): BERT is shown many pairs of sentences, and is
tasked with producing a score capturing their similarity. This procedure
produces a fantastic semantic similarity classifier, but it is not efficient. In this
scheme, BERT can only compare two text segments at a time. If we want to find
the closest pair among many, we’ll have to pass every possible sentence pair
through the model. Since BERT isn’t known for its speed, this procedure could
take a while!

Sentence-BERT (SBERT) addresses these issues. First published in 2019, this
version of BERT is specifically designed for tasks like semantic similarity search
and clustering—tasks that typically rely on cosine similarity to find documents
that are alike. SBERT adds a pooling operation to the output of BERT to derive
fixed sentence embeddings, followed by fine-tuning with a triplet network, in
order to produce embeddings with semantically meaningful relationships. The
result is a model that takes in a list of sentences and outputs a list of
semantically salient sentence embeddings, one for each input sentence. These
embeddings can be passed directly to cosine similarity, and the closest pair can
quickly be determined. The authors demonstrate that SBERT sentence
embeddings outperform aggregated word2vec embeddings and aggregated
BERT embeddings in similarity tasks. Here is a latent space that we can
leverage! SBERT (and SRoBERTa) models are publicly available both on the
Sentence-BERT website and in the Hugging Face Model Repository.

Improving this approach with
Zmap
Let’s take stock of and outline the latent text embedding method. For a
document, d (e.g., a news article), we want to predict a label, l, from a set of
possible labels. We apply SBERT to our document, d, and to each of the l labels,
treating each label as a “sentence.” We then compute the cosine similarity
between the document embedding and each of the label embeddings. We
assign the label that maximizes the cosine similarity with the document

https://arxiv.org/abs/1908.10084
https://www.sbert.net/
https://huggingface.co/models


embedding, indicating that these embeddings are most similar in SBERT latent
space. This process can be succinctly expressed as:

We then repeat this for every document in our collection, and voilà!

This actually works relatively well, depending (of course) on the dataset, and
the quality and number of labels. But Sentence-BERT has been optimized…
well, for sentences! It’s reasonable to suspect that SBERT’s representations of
single words or short phrases like “Business” or “Science & Technology” won’t
be as semantically relevant as representations derived from a word-level
method, like word2vec or GloVe. This means, for example, that the word2vec
representation of “Business” could well have a more meaningful relationship
with other words in the word2vec latent space than its SBERT representation in
SBERT latent space.



In a perfect world, we’d use SBERT to embed our documents, and w2v or GloVe
to embed our class labels. Unfortunately, these embedding spaces do not have
any inherent relationship between them, so we would have no way to know
which labels were closest to our document. We could learn a relationship
between these two spaces, but in order to do that, we’d need some annotated
data—which defeats the purpose of zero-shot learning!

Left: In w2v latent space there tends to exist structure between similar

words. Here, “Game” is a singular event in “Sports,” while “Company” is

a singular entity conducting “Business.” Right: SBERT space is unlikely

to have a similar structure between individual words, making it

challenging to rely on SBERT label representations alone for

classification.



Instead, we can generate an approximation, by learning a mapping between
individual words in SBERT space to those same words in w2v space. We begin
by selecting a large vocabulary of words (we’ll come back to this) and obtaining
both SBERT and w2v representations for each one. Next, we’ll perform a least-
squares linear regression with l2 regularization between the SBERT

representations and the w2v representations.[1]

This results in a matrix, Z, which maps SBERT space to w2v space. We’ll use Z
to transform both SBERT document representations (e.g., sentences) and
SBERT label representations (e.g., words) into a new, lower-dimensional latent
space, and perform our cosine similarity classification procedure in this new
space.

Left: Ideally we’d map SBERT sentence representations to w2v word

representations but that requires labeled data. Right: By mapping words

in SBERT space to those same words in w2v space we can learn an

approximate mapping between the two latent spaces.



This is how our classification model looks now:

All we’ve done is to multiply Z to both the document representation and the
label representations, and then maximize the cosine similarity over the label
set, as before.

So where does this “large vocabulary of words” come from? One approach
(used by the Hugging Face team) is to leverage the fact that w2v (and other
popular open-source word embeddings) is trained on a massive corpus of text.
Most publicly released word representations are ordered by word frequency,
with the most common words at the “top” and rare words at the “bottom.” This
means that you can quickly identify a large vocabulary of the most frequently
used words in that corpus.

Once we’ve created a mapping, Z, between SBERT space and w2v space, we

can use it to transform SBERT representations of sentences (such as news

articles) and words (such as label names) into w2v space, incorporating

the best of both worlds!



The assumption here is that learning a mapping between SBERT and w2v for
the most commonly used words (as measured over a massive corpus of text)
will provide a good mapping between the two latent spaces. Another approach
we tried is to use the most frequent words in the corpus you wish to classify. In
either case, the greatest benefit to both these approaches is that neither
requires any annotated data—but each comes with pros and cons. (We’ll discuss
those and explore the performance results in the Experiments section below.)

Incorporating labeled data
Everything we’ve discussed so far has been under the premise that we have no
labeled data whatsoever (“on-the-fly” learning). But what if you have some?
The latent embedding approach is highly adaptable and can be modified to work
with annotated examples in each category (few-shot learning), or when we
might only have annotated examples for a subset of categories we’re interested
in (traditional zero-shot learning). How do we take advantage of these labeled
examples? We’ll follow the approach that the Hugging Face team outlines in
their blog post, while hopefully providing a bit more context.

This method involves learning another mapping, this time between the
documents and their labels—but we need to be careful not to overfit to our few
annotated examples. Our goal is to learn a transformation that will rely on the
semantic richness of our representations so far (i.e., multiplying SBERT
embeddings by Z), while still allowing us to incorporate information from the
labeled examples.

One way to accomplish this is to modify the regularization term in the linear
regression. Before looking at this modification, let’s take a closer look at the
traditional objective function for least-squares with l2 regularization in order to
get a feel for how this is accomplished.

Weights, W, are learned through minimizing the loss function, as expressed
below:

The first term essentially tells W how to match an input, X, to an output, Y. The
second term effectively minimizes the norm of the weights. The result is a set



of regularized weights that map X to Y (which was exactly what we wanted in the
previous section). Now we’ll modify the regularization term:

The first term still tells W how to map X to Y, but in the second term, the

elements of the weight matrix are now pushed towards the identity matrix.[2]

If we only have very few examples, W will likely be quite close to the identity
matrix. This means that when we apply W to our representations, SBERT(d)ZW
will be very close to SBERT(d)Z. This is exactly what we want: to rely strongly on
our original representations in the face of few examples. If we have many
examples to learn from, W will be pushed further away from the identity matrix,
in which case it will more strongly modify the composition of SBERT(d)ZW,
potentially changing the predicted label for the document, d. Our final
classification procedure now looks like this:

It’s important to note that this technique is now akin to supervised learning: W
is learned from training examples, and applied to test examples. However,
notice that we have not specified whether W is learned in a few-shot way
(annotated examples for each relevant label) or in a zero-shot way (annotated
examples for only a subset of the labels we are interested in). The approach is
the same regardless, which is what makes this technique so flexible.

So how well does it work? Let’s find out.



While not comprehensive, this section seeks to provide some background on
how different choices in the construction of these mappings affects the
outcome of classification. All of our experiments can be found in a collection of
Colab notebooks on our github repo.

First, let’s talk data
We explored text classification with two different datasets.

AG News

The original dataset consists of more than one million news articles gathered
from more than 2000 news sources by ComeToMyHead (an academic news
search engine) in more than one year of activity. We use a subset constructed
for topic classification consisting of news articles in four categories. The training
set consists of 30,000 articles for each category (120,000 total), while the test
set contains 1,900 articles for each category (7,600 total). When performing
“on-the-fly” classifications, we used only the test set. We pulled the AG News
topic classification dataset from the open-source Datasets repository
maintained by Hugging Face.

Reddit

This dataset contains nearly four million preprocessed submissions and
comments from Reddit, collected between 2006 and 2016. It restricts to only
those posts that include a “TL;DR” summary, which we use as the text we wish
to classify into one of many possible subreddits (our target variable). We filtered
this dataset down to the top 16 most popular subreddits by number of posts,
resulting in over 600,000 examples. We randomly selected a stratified 10% of
the posts as a test set, which we used in our “on-the-fly” classification. The full
dataset can also be obtained from the Datasets repository maintained by
Hugging Face.

Experiments

https://github.com/fastforwardlabs/few-shot-text-classification
https://huggingface.co/docs/datasets/
https://huggingface.co/datasets
https://www.aclweb.org/anthology/W17-4508/


Improving on-the-fly classification
with Zmap
Earlier, we talked about creating a mapping between SBERT and w2v spaces by
comparing where individual words live in each of those spaces. This requires
selecting a vocabulary of words. Which words create the best map? And how
many words do you need?

How many words do you need?
Bigger isn’t always better. We explored the general effect on classification
accuracy of a Zmap constructed from different numbers of words. We built a
vocabulary from the most frequent words as measured over the corpus on
which word2vec was trained. We first constructed Zmap from the top 100 most
frequent words, then the top 200 most frequent words, and so on, until we’d
included the top 100,000 most frequent words. With Zmap constructed, we
then measured the accuracy of the resulting classification for both the AG News
and Reddit datasets. The figure below shows the behavior we observed. As we
increased the number of words used to construct Zmap, classification scores
also increased, but only to a point. Eventually, after about 20,000 words, scores
tended to decrease again. Why?



The answer is likely largely due to the fact that we’re including rarer words,
which could be interpreted as noise. The words are in descending order by
frequency; this means the most common words are at the “top,” so as we
include more words, we’re including rarer words.

The matrix, Zmap, is a fixed size because it maps from SBERT space (where
embedding vectors are 768 elements long) to w2v space (where embedding
vectors are only 300 elements long). This means that Zmap has dimension (768,
300), regardless of how many words are used to construct the mapping. When
we have only a few words (say, 100), Zmap doesn’t contain enough information
to provide a useful transformation, so the overall classification suffers. When
we have 100,000 words, the rare words dilute the effect of the more common
words and again, the overall classification suffers.

Note: In order to focus on the general shape of these curves, we

constructed this figure using relative accuracy (that is, the accuracy

of each Zmap experiment is divided by the accuracy of the best

experiment overall for that dataset). You can see how we constructed

these curves in our Colab notebook.



There seems to be a sweet spot around 20,000 words—a finding we did not
expect, but saw echoed in other datasets we tried (but do not show here). This
peak is quite broad, and using anywhere from 15,000-25,000 words will likely
optimize Zmap. However, using this optimized Zmap does not necessarily result
in the best overall text classification. (We’ll explain this cryptic statement in the
next section.)

Which words make the best Zmap?
Instead of working in relative terms, let’s get specific, and explore the efficacy
of Zmap. Below, we compare the classification accuracy of the latent text
embeddings method using only SBERT representations, and transforming those
representations with Zmap.

The teal bars represent classification accuracy when using only SBERT
representations. We achieve over 50% accuracy for AG News, and nearly 40%
accuracy for the Reddit dataset. While these might not seem like numbers to
write home about, keep in mind that we did not perform any supervised training
procedure! In general, scores are worse for the Reddit dataset because it’s
simply harder to correctly classify into ten categories rather than only four. In



both cases, scores reflect better-than-random accuracy, so we’re definitely on
the right track.

The orange bars illustrate the effect of transforming SBERT representations
with a Zmap constructed from a vocabulary of 20,000 words. We observe a
dramatic increase in performance for the AG News dataset: nearly 15 points!
However, the news isn’t so rosy for the Reddit dataset, where we actually see a
drop in classification accuracy. What gives?

To dig a bit deeper, let’s perform some cursory error analysis. Below, we break
down the predictions for the AG News dataset by category for both the SBERT-
only and SBERT*Zmap classification procedures. Each category contains 1,900
examples, so if our classification were perfect, each bar would fall exactly at
1,900 examples in the diagram below. Looking at the teal bars (SBERT-only), we
instead see a plurality of the news articles were predicted under the World
category, with only a paltry few predicted as Sports. Once we transform these
representations with Zmap (orange bars), we see the predictions begin to
balance out between the four categories, which results in that dramatic 15 point
accuracy increase.



We speculate that the word “World” is so vague and all-encompassing that
many news articles would end up being closer to this word than any other
category name in SBERT space. Once we have a better mapping between
SBERT space and w2v space (which is better at capturing the semantic meaning
of individual words), more articles are predicted to be Sports. This is great! And
it’s exactly what we expected Zmap to do.

So why didn’t this work for the Reddit dataset? We constructed Zmap from a
vocabulary of 20,000 most frequently used words in the corpus on which
word2vec was originally trained, which happens to be a large portion of the
Google News corpus. Perhaps this is why it performs so well with AG News, but
not Reddit—words that are very common in one news corpus (Google News)
might provide a better mapping for another news corpus (AG News) than for a
collection of user posts and comments on Reddit.

To address this, we constructed a new Zmap from the 20,000 most frequently
used words in the Reddit corpus. Below, we break down the predictions for the
Reddit dataset as we did previously for the AG News dataset. This time, we
show three bars for each category (subreddit name), corresponding to
predictions using SBERT only, SBERT transformed with Zmap constructed from
w2v words, and SBERT transformed with Zmap constructed from Reddit words.
In this case, each category contains 1,300 examples, so if our classification
were perfect all the bars would be the same height and fall exactly at 1,300
examples.



Instead, we see something rather peculiar. Using SBERT representations alone
(teal bars), we find posts are predicted under the Funny subreddit more than
any other. “Funny” is a pretty general word, much like “World” was in the AG
News example. However, this time, applying various Zmaps only serves to
exacerbate the discrepancy!

Rather than revealing a flaw in the method, we surmise that this is exactly what
we should expect. While both “Funny” and “World” have broad, sweeping
meanings, we argue that “Funny” is even more universal. Posts from any of
these ten subreddits could easily be considered “Funny,” since humor is a
common mode of communication among humans. Whether we’re talking about
fitness or finance, we like to laugh!—and when we create better mappings
between SBERT sentence space and w2v word space, we’re reinforcing that
nearly everything can be funny.

This example serves to highlight a limitation of the latent text embedding
method: not only do category labels need to have semantic meaning, they also
need to have specific semantic meaning to maximize the method’s utility.



In general, an optimal Zmap will usually provide a better representation for
classification. We find that constructing it from a vocabulary of 20,000 words is
sufficient, and those words can come either from the w2v corpus, or from your
own corpus. This technique is entirely unsupervised (as these words come
either from open sources or from your own data), and it requires zero annotated
examples.

So far, our experiments have focused on the performance of the latent text
embedding method that does not rely on any labeled data whatsoever. Let’s
now turn to another, perhaps more likely scenario: having some labeled data,
but perhaps not enough to rely on traditional supervised classification
techniques.

Few-shot classification by
optimizing Wmap
We’ll start by assuming that our SBERT representations transformed by Zmap
provide a good starting point for classification in latent space. We’ll then use
labeled data to learn an additional mapping, Wmap, between example
representations and their corresponding label representations. Wmap will then
be applied as a second transformation before classification.

In general, Wmap provides a nice boost in classification accuracy on both the
AG News and Reddit datasets, as shown below. In this figure, the blue bars
represent measured accuracy after training on 500 AG News and 30 Reddit
examples in each of their respective categories. This amounts to a total of 2,000
training examples for the AG News dataset, and 300 training examples in the
Reddit dataset. Should we have used more labeled examples? Could we get
away with fewer?



It turns out that not only is this method great for limited amounts of labeled
data, it can only handle limited amounts of labeled data! We explored how
accuracy changed as a function of training on an increasing number of
annotated examples. Known as learning curves, these figures are a quick way to
assess the general performance of your model, as well as possible areas of
overfitting.



In both cases, training with very few examples is likely to lead to overfitting, in
which the model essentially memorizes the training set and thus does not
generalize well to the test set. This happens even with a significant amount of
regularization when training Wmap. However, we see this effect is mitigated
when training on around 100 examples per category. The test accuracy plateaus
quickly, which means that training on additional examples is unlikely to provide
any further increase in accuracy.

To answer our earlier questions: for the AG News dataset, we probably didn’t
need 500 examples per category; 100 each would have yielded similar results.
For the Reddit dataset, 30 examples per category probably resulted in a slightly
overfit Wmap. We would be better served if we doubled the number of training
examples in each category.

It might seem disappointing that these scores plateau so quickly, and that it’s
essentially useless to train on more than about 100 examples per category, but
keep in mind that generalization in machine learning stems largely from the
ability of the model to capture increasingly complex statistical patterns. This is
typically only possible with larger models, i.e., more parameters. In our case,
Wmap is a fixed size, and thus it is quickly saturated—which is why more training
examples do not provide additional gains. But this is great news for learning

Average train (orange) and test (blue) classification accuracy with

training performed on an increasing number of annotated examples for

both the AG News (left) and Reddit (right) datasets. The error bars

represent one standard deviation determined by randomly sampling

different labeled examples for each training sample size.



with limited data; not only does the method work well in this regime, it’s actually
perfectly suited! If you find yourself with more than a couple hundred labeled
examples in each of your categories, you will likely be better off exploring a
more traditional ML approach that can better capture the data’s complexity.



Another benefit of the latent text embedding method is its inherent
interpretability. Word2vec has been lauded for its interpretability, with the
discovery that the numerical representations of words could be added and
subtracted—the result of which would be the numerical representation of a
word that completes an analogy. For example, the expression “Paris” +
“France” - “Italy” would yield an embedding vector that is very close to the
word “Rome.” While it’s unclear if SBERT space operates similarly to w2v space
(and what does it even mean to add and subtract documents?), having all the
documents and labels embedded into the same latent space provides us with
insight into why documents are predicted to have a given label.

In the figure below, we embedded the AG News test set and the four category
names (using SBERTZmap) and used the UMAP algorithm to render a two-
dimensional embedding that we could visualize. We see that, in general, most
articles cluster well around or near their label. The star represents a specific
article that was predicted to have the label Business, and we can see that it is,
in fact, closest to the label Business. This is the inherent power of latent
embedding spaces for interpretability.

Interpretability



UMAP was used to learn a 2-dimensional embedding from the SBERT*Zmap

representations for all 7,600 news articles and the four label names in

the AG News test set. The large squares are the location of the label

names, while the small points each represent a news article, color-coded

by their label. The large star represents a specific Business news

article.



While the latent text embedding approach provides a flexible and semi-
interpretable way to classify text, it’s not without its limitations.

Validation is a challenge
Let’s address the elephant in the room: we had access to labeled training and
test sets for all the experiments performed for this report, which is how we
were able to assess the performance of Zmap. In a real-world, “on-the-fly,” no-
labeled-data-available situation, validating the results of the method is
essentially impossible. This is why we spent time looking for possible
generalities that could provide guidance on how to use this method in a
practical application—but, as we saw with the Reddit dataset, sometimes Zmap
actually makes your classification accuracy worse! And without labeled data to
validate the method, you will have no way of knowing if this is the case for your
data.

This isn’t solely an issue with the latent text embedding approach—this is a
challenge for any unsupervised learning situation. The solution, unfortunately,
is to simply buckle down and label some data! As we saw, even just a couple
hundred examples can provide a wealth of insight and performance gains.

Meaningful labels are a necessity
It’s not enough to have a few labeled examples for training or validation; care
must be taken when deciding what the label names themselves will be. This
method relies on labels laden with meaning, and that possess some semantic
relationship to the text documents you wish to classify. If, for example, your
labels were Label1, Label2, and Label3, this method would not work, because
those labels are meaningless.

In addition to being meaningful, label names should not be too general. As we
saw, the words “World” and “Funny” were too broad and all-encompassing to
be practical label names. While an optimal Zmap was able to correct for this

Limitations



effect in the World example, this won’t always be the case, as we saw with the
label Funny.

This probably won’t beat
supervised methods
Finally, in terms of performance metrics like accuracy or F1 score, the latent text
embedding approach won’t beat out standard supervised text classification
methods. We saw that even the best optimization of Wmap could only increase
the classification accuracy by 10-15 points, and training on more labeled
examples didn’t help. If you have a good amount of labeled data, it’s worth
checking out traditional supervised approaches first.



Text is everywhere. The amount of text data in the world is rapidly increasing,
but much of it is not labeled. Classifying text data is not only a goal in and of
itself, but is often a stepping stone to a wealth of more complex capabilities
such as recommendation systems and sentiment analysis. This has fueled
research to pursue new text classifications techniques that make the most of a
few labeled examples. However, classic techniques, like latent text
embeddings, should also not be overlooked, especially with the advent of new
and improved text embedding algorithms like Sentence-BERT.

While there are limitations to the method, we like the latent text embedding
approach because of its simplicity, flexibility, and interpretability. This method is
a great starting point for situations in which only a few labeled examples exist.
Additionally, this method could serve as a strategy for bootstrapping those few
labeled examples into many more—by allowing a human to identify and label
articles closest to those which are already annotated, or which are most similar
to the label name of interest.

We built a demo of this method that you can try out yourself. It allows the user
to play around with the various strategies presented here, including applying
Zmaps and trained Wmaps, for the AG News dataset. You can easily spin it up by
cloning our github repo. Check it out!

1. It turns out that the solution to ordinary least squares with l2 regularization
can be written as a concise equation, so we do not need to perform gradient
descent to learn the weights. Instead, we need only invert a matrix. For
intuition on how to interpret least squares as a linear algebra problem,
check out this fantastic blog post. ↩ 

2. As the Hugging Face team points out, this is equivalent to Bayesian linear
regression with a Gaussian prior on the weights, centered at the identity
matrix. Our prior belief is that our embedding mechanism, SBERT(d)Z,
produces good text representations, and we only update this belief (move
away from the identity matrix) as we see more training examples. ↩ 

Conclusion

https://github.com/fastforwardlabs/few-shot-text-classification
https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f39b



